上海交通大学与中国科学院上海硅酸盐研究所等单位合作,在无机塑性半导体研究领域取得重大突破,相关成果以“Exceptional plasticity in the bulk single crystalline van der Waals semiconductor InSe”为题,于北京时间7月31日发表在Science杂志上。该研究发现,二维结构范德华半导体InSe在单晶块体形态下具有超常规的塑性和巨大的变形能力,既拥有传统无机非金属半导体的优异物理性能,又可以像金属一样进行塑性变形和机械加工,在柔性和可变形热电能量转换、光电传感等领域有着广阔的应用前景。
史迅教授/研究员、Jian He教授、陈立东研究员为本文通讯作者;魏天然助理教授、金敏教授、王悦存副教授为共同第一作者。该研究参加单位包括上海交通大学、中科院上海硅酸盐研究所、上海电机学院、西安交通大学、中科院宁波材料所、Clemson University。
史迅与陈立东等开创性地提出无机塑性半导体新概念,在具有优异电学性能的无机半导体中实现良好可加工和变形能力,将有机材料和无机材料的优点合二为一。2018年,他们发现了首个室温塑性半导体材料——Ag2S,并揭示了其塑性变形机制(Nature Mater. 2018, 17: 421);随后通过电性能的优化使其同时具有良好柔性/塑性和热电性能(Energy Environ. Sci. 2019, 12: 2983),开辟了无机塑性半导体和柔性/塑性热电材料新方向。
受Ag2S准层状结构与非局域、弥散化学键特性的启发,该研究聚焦一大类包含范德华力的二维结构材料,并在其中发现了具有超常塑性的InSe晶体。对二维材料而言,单层或薄层样品很容易发生弹性变形,表现出一定的柔性;然而,当厚度增大时,二维材料通常因其较弱的层间作用力极易发生解理,因此块体形态下的变形能力很差。而该研究发现,不同于多晶形态下的脆性行为,InSe单晶二维材料在块体形态下可以弯折、扭曲而不破碎,甚至能够折成“纸飞机”、弯成莫比乌斯环,表现出罕见的大变形能力(图1)。非标力学试验结果进一步证实了材料的超常塑性,其压缩工程应变可达80%,特定方向的弯曲和拉伸工程应变也高于10%。
图1. InSe单晶块体的超常塑性。
(A)晶体结构;(B)晶体铸锭与(C)解理面;(D-G)单晶片可折叠或弯曲成各种形状而不破裂;(H)沿c轴与(I)垂直c轴方向压缩的应力-应变曲线及压缩前后样品照片。
精细结构表征和原位微纳压缩实验结果表明,InSe单晶块体的塑性变形主要来自层间的相对滑动和跨层的位错滑移(图2)。进一步研究发现,InSe的变形能力和塑性与其特殊的晶体结构和化学键密切相关。首先,InSe的面内弹性模量仅约53 GPa,远低于绝大多数二维晶体材料(图3A),表明层内本质非常“柔软”,较易发生弹性弯曲。更重要的是,InSe具有独特的层间相互作用,如图3B所示,InSe(001)面之间相对滑移能垒极低,而解理能显著高于其他二维材料以及典型的脆性材料,表明InSe易滑移难解理。差分电荷密度(图3D)与晶体轨道分布密度(COHP)(图3G)计算表明InSe相邻层间除了Se-Se范德华力外,还存在着In-Se之间的长程库伦力。这些多重、非局域的较弱作用力一方面促进层间的相对滑移,另一方面又像“胶水”一样把相邻的层“粘合”起来,抑制材料发生解理,同时保证了位错的跨层滑移。
图2. InSe的塑性变形机制。
(A)晶带轴为[001]的低倍透射电镜(TEM)照片,插图为反傅里叶变换高分辨扫描透射暗场像(IFT-DF-STEM),可见滑移台阶;(B,C)刃位错的IFT-DF-STEM像,半原子面垂直于c轴,伯氏矢量方向为跨层方向;(D-G)扫描电镜(SEM)下原位压缩实验,揭示了层间滑动与跨层滑移。
图3. InSe的成键特性。
(A)六方结构典型材料的面内杨氏模量;(B)代表性材料的滑移能(Es)和解理能(Ec);(C,D)差分电荷密度;(E)电荷密度;(F)电子局域函数;(G-I)层间In-Se键(G)、层内In-Se键(H)与层内In-In键(I)的晶体轨道哈密顿密度。
基于InSe单晶特殊的力学性质和化学键特性,该工作提出了一个评价和预测(准)二维材料变形能力的因子:= Ec/Es (1/Ein),其中Ec是解理能,Es是滑移能,Ein是沿着滑移方向的杨氏模量。具有高解理能、低滑移能、低杨氏模量的材料有望具有良好的塑性变形能力。该判据很好地解释了目前已发现的两种无机塑性半导体Ag2S和InSe,也为其他新型塑性和可变形半导体的预测和筛选提供了理论依据(图4)。
图4. 不同材料的变形因子与禁带宽度图谱
该研究得到了国家重点研发计划、国家自然科学基金和上海市科委的资助和支持。
来源:领研网